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 Methods for Handling Deadlocks
 Deadlock Prevention
 Deadlock Avoidance
 Deadlock Detection 
 Recovery from Deadlock 
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Chapter Objectives

 To develop a description of deadlocks, which prevent sets of 
concurrent processes from completing their tasks

 To present a number of different methods for preventing or 
avoiding deadlocks in a computer system
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Deadlock
 Recall from Chapter 5
 Deadlock – two or more processes are waiting indefinitely for an 

event that can be caused by only one of the waiting processes
 Example: Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);                 signal(Q);

signal(Q);                 signal(S);
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System Model
 System consists of resources
 Resource types R1, R2, . . ., Rm

CPU cycles, files, memory space, I/O devices, etc
 Each resource type Ri has Wi instances.

 Type: CPU 
 2 instances - CPU1, CPU2

 Type: Printer 
 3 instances - printer1, printer2, printer3
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System Model
 Each process utilizes a resource as follows:

 Request resource
 A process can request a resource of a given type

– E.g., “I request any printer”
 System will then assign a instance of that resource to the process  

– E.g., some printer will be assigned to it
 If cannot be granted immediately, the process must wait until it can get it

 Use resource
 Operate on the resource, e.g. print on the printer

 Release resource
 Mutexes and Semaphores

 Special case: 
 Each mutex or semaphor is treated as a separate resource type
 Because a process would want to get not just “any” lock among a group of 

locks, but a specific lock that guards a specific shared data type
– e.g., lock that guards a specific queue
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Deadlock Characterization

 Mutual exclusion: only one process at a time can use a resource
 Hold and wait: a process holding at least one resource is waiting to 

acquire additional resources held by other processes
 No preemption: a resource can be released only voluntarily by the 

process holding it, after that process has completed its task
 Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes 

such that 
 P0 is waiting for a resource that is held by P1, and so on:
 P0 → P1 → P2 → … → Pn–1→ Pn → P0

 Notice: “Circular wait” implies “Hold and Wait”
 Why then not test for only the “Circular wait”?
 Because, computationally, “Hold and wait” can be tested much 

more efficiently than “Circular wait”
 Some algorithms we consider only need to check H&W 

Deadlock can arise if 4 conditions hold simultaneously:
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Deadlock with Mutex Locks

 Deadlocks can occur via system calls, locking, etc.
 Trivial example

 Mutexes A, B – unlocked initially
 Process P1: wait(A); wait(B);
 Process P2: wait(B); wait(A); 
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Deadlock Example

/* thread one runs in this function */ 

void *do_work_one(void *param)
{ 

pthread_mutex_lock(&first_mutex); 

pthread_mutex_lock(&second_mutex); 

/** * Do some work */
pthread_mutex_unlock(&second_mutex); 

pthread_mutex_unlock(&first_mutex); 

pthread_exit(0); 

} 

/* thread two runs in this function */ 

void *do_work_two(void *param)
{ 

pthread_mutex_lock(&second_mutex); 

pthread_mutex_lock(&first_mutex); 

/** * Do some work */
pthread_mutex_unlock(&first_mutex); 

pthread_mutex_unlock(&second_mutex); 

pthread_exit(0); 

} 
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Resource-Allocation Graph

 Resource-Allocation Graph
 Useful tool to describe and analyze deadlocks
 Set of vertices V
 Set of edges E

 V is partitioned into two types:
 P = {P1, P2, …, Pn}, the set of all the processes in the system
 R = {R1, R2, …, Rm}, the set of all resource types in the system

 request edge – directed edge Pi → Rj

 Means Pi has requested (an instance of) Rj  and now is waiting for it

 assignment edge – directed edge Rj → Pi

 Means an instance of Rj has been assigned to Pi
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Pictorial Representation

 Process

 Resource Type (with 4 dots for 4 instances in this specific 
example)

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Pi

Rj

Rj
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Example of a Resource Allocation Graph



7.13

Basic facts

 Consider Resource-Allocation Graph

 Case 1: Each resource type has only 1 instance
 A cycle in the graph is a necessary and sufficient condition for a 

deadlock
 That is: graph has a cycle  a deadlock

 Case 2: A resource type can have multiple instances
 A cycle in the graph is a necessary (but not sufficient) condition 

for a deadlock, that is:
 If graph has no cycles, then no process is deadlocked
 If graph has a cycle, may (or may not) be deadlocked
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Two Minimal Cycles and P1 P2 P3 are Deadlocked
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A Cycle But No Deadlock

 P4 might release its instance of R2
 That instance will then be allocated to P3 
 Edge P3 → R2 will become R2 → P3
 Hence, the cycle will break
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Methods for Handling Deadlocks

 Three ways to handle deadlocks:
1. Ensure that the system will never enter a deadlock state:

 Deadlock prevention
 Deadlock avoidance

2. Allow the system to enter a deadlock state and then recover
3. Ignore the problem and pretend that deadlocks never occur in the system 

 Used by most operating systems, including UNIX
 One reason: Handling deadlocks can be computationally expensive
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Deadlock Prevention
 Key idea: Restrain the ways request for resources can be made 
 Recall, all 4 necessary conditions must occur for a deadlock to happen

1. Mutual Exclusion
2. Hold and Wait
3. No preemption
4. Circular Wait

 If we ensure at least one condition is not met, we prevent a deadlock
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Deadlock Prevention: Mutual Exclusion
 #1 Mutual Exclusion:  only one process at a time can use a resource  
 Solution:

 Mutual exclusion is not required for sharable resources 
 Example: Accessing the same files, but only for reading 
 So do not use mutual exclusion for such cases

 However, it must hold for non-sharable resources 
 Bottom line: Use mutual exclusion only when you really have to
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Deadlock Prevention: Hold and Wait

 #2 Hold and Wait: a process holding at least one resource is 
waiting to acquire additional resources held by other processes 

 Idea: must guarantee that whenever a process requests a 
resource, it does not hold any other resources

 Solutions include:
1. Require process to request and be allocated all its 

resources before it begins execution, or 
2. Allow process to request resources only when the process 

has none allocated to it
 Cons: Low resource utilization; starvation possible
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Deadlock Prevention: No Preemption

 #3 No Preemption: a resource can be released only voluntarily by the 
process holding it, after that process has completed its task

One possible solution (is to implement preemption):
 Assume 

 Process P is holding some resources - (set) R
 P then requests another resource r
 But r cannot be immediately allocated to P 

 That is, P must wait for r 
 Then 

 All resources R  are preempted 
 That is, they are implicitly released

 Resources from R are added to the list of resources for which P is waiting
 P will be restarted only when it can regain R , as well as r
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Deadlock Prevention: Circular Wait
 #4 Circular Wait: there exists a set {P0, P1, …, Pn} of waiting 

processes such that 
 P0 is waiting for a resource that is held by P1, and so on
 P0 → P1 → P2 → … → Pn–1→ Pn → P0

One possible solution:
 impose a total ordering of all resource types, and 

 OrderOf(Rj) – gives order of Rj

 require that each process requests resources in an increasing order of 
enumeration
 Rewrite the code such that this holds
 If a process holds a lock for Rj it should not request a lock for any 

Rk such that OrderOf(Rk) < OrderOf(Rj)
 Example 

 Order resources A,B,C,D,E as D < E  < C < A < B 
 Assume: Process holds a lock for, say, A and C
 Then, the process should not request locks for D or E
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Deadlock Example with Lock Ordering
void transaction(Account from, Account to, double amount) 

{ 

mutex lock1, lock2; 

lock1 = get_lock(from); // notice, lock1 is assigned dynamically
lock2 = get_lock(to); // lock2 is assigned dynamically as well
acquire(lock1); // yes, lock1 is always acquired before lock2
acquire(lock2); // but it does not mean order(lock1) < order(lock2)

withdraw(from, amount); 

deposit(to, amount); 

release(lock2); 

release(lock1); 

} 
 Transactions 1 and 2 execute concurrently:  (1) transaction(A, B, $25) (2) transaction(B, A, $50)

 Deadlock is possible (even though a presumed “ordering” exists) 

 Because locks are acquired/assigned dynamically

 How to fix it? 

 don’t fix the order to “lock1 and then lock2”

 Instead, order lock1 and lock2 each time: after get_lock() but before acquire() 
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Deadlock Avoidance

 Simplest and most useful model requires that each process 
declare the maximum number of resources of each type 
that it may need

 The deadlock-avoidance algorithm dynamically examines 
the resource-allocation state to ensure that there can never 
be a circular-wait condition

 Resource-allocation state is defined by: 
1. number of available resources
2. number of allocated resources
3. maximum resource demands of the processes

Idea: Require that the system has some additional a priori information 
about how resources will be used
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Safe State

 The deadlock avoidance algorithm relies on the notion of safe state
 A state is safe if the system can allocate resources to each process (up to its 

maximum) in some order and still avoid a deadlock.

 Formally: System is in safe state only if 
 There exists a safe sequence (of processes) -- explained shortly
 That is, it is possible to order all processes to form a safe sequence
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Safe Sequence
 System is in safe state only if there exists a safe sequence 

 Safe sequence - is a sequence (ordering) <P1, P2, …, Pn> of all the  
processes in the systems, such that:  
 for each Pi -- the resources that Pi can still request can be satisfied by: 

 currently available resources, plus 
 resources held by all the Pj, with j < i    (that is, by P1, P2, …, Pi -1)

 Intuition behind a safe sequence:
 if Pi resource needs are not immediately available 
 then Pi can wait until P1, P2, …, Pi-1 have finished

 at that stage Pi will be guaranteed to obtain the needed resources 
– so Pi can execute, return allocated resources, and terminate
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Basic Facts

 If a system is in safe state ⇒ no deadlocks
 If a system is in unsafe state ⇒ possibility of deadlock
 Avoidance ⇒ ensure that a system will never enter an unsafe state.

 Solution: Whenever a process requests a resource that is available:
 Decide: 

 If the resource can be allocated immediately, or 
 If the process must wait

 Request is granted only if it leaves the system in the safe state
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Safe, Unsafe, Deadlock State 
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Deadlock Avoidance Algorithms

 Deadlock Avoidance algorithms for two cases:

 Case 1. Each resource type has exactly 1 instance
 Use a (modified) resource-allocation graph

 Case 2. A resource type can have multiple instances
 Use the banker’s algorithm
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Case1: Single instance per resource type
 Use the resource allocation graph
 Idea: Resources must be claimed a priori in the system

 Before they start, all processes declare which exact 
resources they may use

 Recall that: when only 1 instance per resource type, it holds:
 graph contains a cycle  deadlock

 Solution: the resource allocation graph is augmented
 with claim edges
 to provide deadlock avoidance
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Process may request resource

Process has requested resource

Process is assigned resource

Edges in the claim graph
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Claim Edges
 Claim edge

 Pi → Rj indicates that process Pj may request resource Rj

 It is represented by a dashed line
 When a process requests a resource

 The claim edge converts to request edge 
 When the resource is allocated to the process

 The request edge converted to an assignment edge 
 When a resource is released by a process 

 The assignment edge reconverts to a claim edge
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Resource-Allocation Graph Algorithm

 Suppose that process Pi requests a resource Rj

 The request can be granted only if converting the request 
edge to an assignment edge does not result in the formation 
of a cycle in the resource allocation graph

Unsafe state

R1

R2

P1 P2

R1

R2

P1 P2

Safe state
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Banker’s Algorithm

 Now what if Multiple instances of resources per resource type
 Use Banker’s Algorithm

 Each process must a priori claim maximum use
 When a process requests an available resource 

 it may have to wait
 When a process gets all its resources 

 it must return them in a finite amount of time
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Data Structures for the Banker’s Algorithm 
 An example on the next slide…
 n = number of processes 
 m = number of resources types
 Process Pi, resource type Rj

 Available[m]:

 vector of length m
 Available[j]=k -- means k instances of Rj available

 Max[n,m]:

 n x m matrix  
 Max[i,j]=k -- means Pi may request ≤k instances of Rj

 Allocation[n,m]:

 n x m matrix  
 Allocation[i,j]=k -- means Pi is currently allocated k instances of Rj

 Need[n,m]: 

 n x m matrix 
 Need[i,j]=k – means Pi may need k more instances of Rj to complete its 

task
 Need[i,j]=Max[i,j] – Allocation[i,j]
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Example of Banker’s Algorithm
 5 processes P0  through P4; 

3 resource types:
A (10 instances),  B (5instances), and C (7 instances)

 Snapshot at time T0:
Allocation Max Available Need

A B C A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2 7 4 3
P1 2 0 0 3 2 2  1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3  4 3 1

 Recall that Need = Max – Allocation



7.36

Safety Algorithm
// Conceptually: tries to find a safe sequence by constructing it.
// Adds one process at a time to it
1.Let Work, Finish be vectors of length m and n, respectively.  Initialize:

Work=Available;                   // vector of currently available resources
Finish[i]=false, for i=0,1,…,n-1; // Pi is already assigned to the sequence?

2. Find an i such that both:                // Find Pi, such that:
(a) Finish[i]=false;      // (a) Pi is not yet assigned to the sequence, and
(b) Needi ≤ Work;         // (b) Pi needs ≤ resources than what’s currently available
if (no such i exists) goto Step 4;
// Here, Pi is OK to add, and hence added to the working sequence, conceptually

3.Work = Work + Allocationi;      // add to Work resources that Pi already has
// Pi will release them when it finishes  

Finish[i] = true;                // Pi is assigned to the sequence, so it is done 
goto Step 2;

4.if (Finish[i]==true, for all i) then the system is in a safe state
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Example of Banker’s Algorithm
 5 processes P0  through P4; 

3 resource types:
A (10 instances),  B (5instances), and C (7 instances)

 Snapshot at time T0:
Allocation Max Available Need

A B C A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2 7 4 3
P1 2 0 0 3 2 2  1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3  4 3 1

 Recall that Need = Max – Allocation
 The system is in a safe state 

 Since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria
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Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi.  
Requesti[j]=k means Pi wants k instances of resource type Rj

1. if (Requesti ≤ Needi) goto Step 2. 

else signal error, since Pi has exceeded its max claim

2. if (Requesti ≤ Available) goto Step 3. 

else Pi must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the 
state as follows:

Available  = Available   – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe ⇒ the resources are allocated to Pi

If unsafe ⇒ Pi must wait, and
 the old resource-allocation state is restored
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Example:  P1 Request (1,0,2)

 Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true
 Available becomes (3,3,2) – (1,0,2) = (2,3,0)

Allocation Need Available
A B C A B C A B C 

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2             0 2 0 
P2 3 0 2 6 0 0 
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1 

 Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> 
satisfies safety requirement

 Can request for (3,3,0) by P4 be granted?

 Can request for (0,2,0) by P0 be granted?
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Deadlock Detection

 If no deadlock-prevention or deadlock-avoidance algorithm is used
 Then system can enter a deadlock state 

 In this environment, the system may provide
 Deadlock detection algorithm
 Deadlock recovery algorithm
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Single Instance of Each Resource Type

 Maintain wait-for graph
 A variant of the resource-allocation graph
 Nodes are processes
 Pi → Pj   if Pi is waiting for Pj

 Periodically invoke an algorithm that searches for a cycle in the 
graph. If there is a cycle, there exists a deadlock

 An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph



7.42

Resource-Allocation Graph and  Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph
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Several Instances of a Resource Type

 Available[m]:

 A vector of length m
 indicates the number of available resources of each type

 Allocation[n,m]:

 An n x m matrix 
 defines the number of resources of each type currently 

allocated to each process
 Request[n,m]:

 an n x m matrix 
 indicates the current request  of each process.  
 Request[i][j] = k means process Pi is requesting k

more instances of resource type Rj.
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Detection Algorithm
//Tries to see if there is at least on way to assign resources to processes, otherwise=>deadlock 
1.Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available;                      //Resources currently Available
for (i=0; i<n; i++)

if (Allocationi!=0) Finish[i] = false; // Pi could be deadlocked: check
else Finish[i] = true;  // only a process that holds some resources      

// can be in a deadlock, otherwise - cannot
2. Find an index i such that both:       // Find Pi such that:

(a) Finish[i] == false;   // (a) Pi is not done yet, needs to be processed
(b) Requesti ≤ Work; // (b) Pi requests ≤ resources than available 

// optimistic: using Requesti not Needi

if (no such i exists) goto Step 4;

// Pi can be allocated
3.  Work = Work + Allocationi // add to Work resources that Pi already has
Finish[i] = true;
goto Step 2

4. if (Finish[i] == false, for some i) 

 then the system is in deadlock state. 
 Moreover, if Finish[i]==false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether the system is in 
deadlocked state
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Example of Detection Algorithm

 Five processes P0 through P4; three resource types 
A (7 instances), B (2 instances), and C (6 instances)

 Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0             0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3             0 0 0 
P3 2 1 1 1 0 0 
P4 0 0 2 0 0 2

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i
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Example (Cont.)

 P2 requests an additional instance of type C
Request
A B C

P0 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0 
P4 0 0 2

 State of system?
 Can reclaim resources held by process P0, but insufficient 

resources to fulfill other processes; requests
 Deadlock exists, consisting of processes P1, P2, P3, and P4
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Detection-Algorithm Usage

 When, and how often, to invoke depends on:
 How often a deadlock is likely to occur?
 How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may be many 
cycles in the resource graph and so we would not be able to tell 
which of the many deadlocked processes “caused” the 
deadlock.
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Recovery from Deadlock:  Process Termination

 Abort all deadlocked processes
 Cons: Very costly – processes could have been running for long 

time.
They will need to be restarted.

 Abort one process at a time until the deadlock cycle is eliminated
 Cons: High overhead since the deadlock detection algorithm is called 

each time one process is terminated

 In which order should we choose to abort?
1. Priority of the process
2. How long process has computed, and how much longer to completion
3. Resources the process has used
4. Resources process needs to complete
5. How many processes will need to be terminated
6. Is process interactive or batch?
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Recovery from Deadlock:  Resource Preemption

 Resource preemption is another method to recover from 
deadlocks

 Selecting a victim – which process to choose to preempt its 
resources? 
 Minimize “cost”. 

 Rollback – return to some safe state, restart process for that 
state. 
 Process cannot continue “as is”, since its resources are 

preempted
 The rollback state should be such that the deadlock 

breaks 
 Starvation – same process may always be picked as victim

 One solution: include number of rollback in cost factor
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